Abstract
Abstract In the paper, a linear differential equation with variable coefficients and a Caputo fractional derivative is considered. For this equation, a Cauchy problem is studied, when an initial condition is given at an intermediate point that does not necessarily coincide with the initial point of the fractional differential operator. A detailed analysis of basic properties of the fundamental solution matrix is carried out. In particular, the Hölder continuity of this matrix with respect to both variables is proved, and its dual definition is given. Based on this, two representation formulas for the solution of the Cauchy problem are proposed and justified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.