Abstract
Abstract One of the effective methods to find explicit solutions of differential equations is the method based on the operator representation of solutions. The essence of this method is to construct a series, whose members are the relevant iteration operators acting to some classes of sufficiently smooth functions. This method is widely used in the works of B. Bondarenko for construction of solutions of differential equations of integer order. In this paper, the operator method is applied to construct solutions of linear differential equations with constant coefficients and with Caputo fractional derivatives. Then the fundamental solutions are used to obtain the unique solution of the Cauchy problem, where the initial conditions are given in terms of the unknown function and its derivatives of integer order. Comparison is made with the use of Mikusinski operational calculus for solving similar problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.