Abstract

Sequential optimality conditions play a major role in proving stronger global convergence results of numerical algorithms for nonlinear programming. Several extensions are described in conic contexts, in which many open questions have arisen. In this paper, we present new sequential optimality conditions in the context of a general nonlinear conic framework, which explains and improves several known results for specific cases, such as semidefinite programming, second-order cone programming, and nonlinear programming. In particular, we show that feasible limit points of sequences generated by the augmented Lagrangian method satisfy the so-called approximate gradient projection optimality condition and, under an additional smoothness assumption, the so-called complementary approximate Karush–Kuhn–Tucker condition. The first result was unknown even for nonlinear programming, and the second one was unknown, for instance, for semidefinite programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.