Abstract
Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate complementarity measure in this context is typically defined in terms of the eigenvalues of the constraint matrix and the eigenvalues of an approximate Lagrange multiplier. By exploiting the Jordan Algebra structure of the problem, we show that a simpler complementarity measure, defined in terms of the Jordan product, is stronger than the one defined in terms of eigenvalues. Thus, besides avoiding a tricky analysis of eigenvalues, a stronger necessary optimality condition is presented. We then prove the global convergence of an Augmented Lagrangian algorithm to this improved necessary optimality condition. The results are also extended to an interior point method. The optimality conditions we present are sequential ones, and no constraint qualification is employed; in particular, a global convergence result is available even when Lagrange multipliers are unbounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.