Abstract
The present thesis deals with optimisation problems with sparsity terms, either in the constraints which lead to cardinality-constrained problems or in the objective function which in turn lead to sparse optimisation problems. One of the primary aims of this work is to extend the so-called sequential optimality conditions to these two classes of problems. In recent years sequential optimality conditions have become increasingly popular in the realm of standard nonlinear programming. In contrast to the more well-known Karush-Kuhn-Tucker condition, they are genuine optimality conditions in the sense that every local minimiser satisfies these conditions without any further assumption. Lately they have also been extended to mathematical programmes with complementarity constraints. At around the same time it was also shown that optimisation problems with sparsity terms can be reformulated into problems which possess similar structures to mathematical programmes with complementarity constraints. These recent developments have become the impetus of the present work. But rather than working with the aforementioned reformulations which involve an artifical variable we shall first directly look at the problems themselves and derive sequential optimality conditions which are independent of any artificial variable. Afterwards we shall derive the weakest constraint qualifications associated with these conditions which relate them to the Karush-Kuhn-Tucker-type conditions. Another equally important aim of this work is to then consider the practicability of the derived sequential optimality conditions. The previously mentioned reformulations open up the possibilities to adapt methods which have been proven successful to handle mathematical programmes with complementarity constraints. We will show that the safeguarded augmented Lagrangian method and some regularisation methods may generate a point satisfying the derived conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.