Abstract
<p style='text-indent:20px;'>The Landau-Lifshitz-Gilbert equation yields a mathematical model to describe the evolution of the magnetization of a magnetic material, particularly in response to an external applied magnetic field. It allows one to take into account various physical effects, such as the exchange within the magnetic material itself. In particular, the Landau-Lifshitz-Gilbert equation encodes relaxation effects, i.e., it describes the time-delayed alignment of the magnetization field with an external magnetic field. These relaxation effects are an important aspect in magnetic particle imaging, particularly in the calibration process. In this article, we address the data-driven modeling of the system function in magnetic particle imaging, where the Landau-Lifshitz-Gilbert equation serves as the basic tool to include relaxation effects in the model. We formulate the respective parameter identification problem both in the all-at-once and the reduced setting, present reconstruction algorithms that yield a regularized solution and discuss numerical experiments. Apart from that, we propose a practical numerical solver to the nonlinear Landau-Lifshitz-Gilbert equation, not via the classical finite element method, but through solving only linear PDEs in an inverse problem framework.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.