Abstract
In this article, we generalize fractional operators (differential and integral) in the unit disk. These operators are generalized the Srivastava-Owa operators. Geometric properties are studied and the advantages of these operators are discussed. As an application, we impose a method, involving a memory formalism of the Beer-Lambert equation based on a new generalized fractional differential operator. We give solutions in terms of the multi-index Mittag-Leffler function. In addition, we sanctify the out come from a stochastic standpoint. We utilize the generalized Wright function to obtain the analytic formula of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.