Abstract

In the geometric function theory much attention is paid to various fractional operators (differential and integrals) mapping the class of univalent functions and its subclasses into themselves. Recently these operators have applications in different fields such as mathematical physics and computer sciences. In this note we shall introduce a generalized fractional differential operator for the class of univalent functions by employing the Srivastava-Owa fractional differential operator in the unit disk. Geometric properties such as convexity are discussed. Topological properties such as boundedness and compactness are studied in different spaces. Furthermore, conditions are given for the generalized fractional integral operator to be bounded in Hardy space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.