Abstract
In this study we are concerned with the local convergence of a Newton-type method introduced by us [I.K. Argyros and D. Chen, On the midpoint iterative method for solving nonlinear equations in Banach spaces, Appl. Math. Lett. 5 (1992), pp. 7–9.] for approximating a solution of a nonlinear equation in a Banach space setting. This method has also been studied by Homeier [H.H.H. Homeier, A modified Newton method for rootfinding with cubic convergence, J. Comput. Appl. Math. 157 (2003), pp. 227–230.] and Özban [A.Y. Özban, Some new variants of Newton's method, Appl. Math. Lett. 17 (2004), pp. 677–682.] in real or complex space. The benefits of using this method over other methods using the same information have been explained in [I.K. Argyros, Computational theory of iterative methods, in Studies in Computational Mathematics, Vol. 15, C.K. Chui and L. Wuytack, eds., Elsevier Science Inc., New York, USA, 2007.; I.K. Argyros and D. Chen, On the midpoint iterative method for solving nonlinear equations in Banach spaces, Appl. Math. Lett. 5 (1992), pp. 7–9.; H.H.H. Homeier, A modified Newton method for rootfinding with cubic convergence, J. Comput. Appl. Math. 157 (2003), pp. 227–230.; A.Y. Özban, Some new variants of Newton's method, Appl. Math. Lett. 17 (2004), pp. 677–682.]. Here, we give the convergence radii for this method under a type of weak Lipschitz conditions proven to be fruitful by Wang in the case of Newton's method [X. Wang, Convergence of Newton's method and inverse function in Banach space, Math. Comput. 68 (1999), pp. 169–186 and X. Wang, Convergence of Newton's method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal. 20 (2000), pp. 123–134.]. Numerical examples are also provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have