Abstract

Proportional-integral (PI) control/loop has been widely used in numerous industrial processes. This article focuses on integrating uncertainty estimator into PI controller for better robustness and transient performance against uncertain nonlinear coupling dynamics and time-varying disturbances. First, the descriptions for the sizes of three kinds of uncertainties in a class of multi-input-multi-output nonlinear systems are discussed. Then, the tuning laws of the typical uncertainty estimator, i.e., extended state observer (ESO), are quantitatively presented to ensure the stability of closed-loop systems. More importantly, it is shown that the desired transient performance of tracking error can be ensured by tuning the bandwidth of ESO. In addition, it is proven that much stronger disturbance rejection at low frequency can be achieved by integrating the uncertainty estimator module. The simulation results for calibration-free robotic eye-hand coordination system show the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call