Abstract
We prove that the tame automorphism group TAut(M n ) of a free metabelian Lie algebra M n in n variables over a field k is generated by a single nonlinear automorphism modulo all linear automorphisms if n ≥ 4 except the case when n = 4 and char(k) ≠ 3. If char(k) = 3, then TAut(M 4) is generated by two automorphisms modulo all linear automorphisms. We also prove that the tame automorphism group TAut(M 3) cannot be generated by any finite number of automorphisms modulo all linear automorphisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have