Abstract
This article considers fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity, which combines the popular generalized autoregressive conditional heteroscedastic (GARCH) and the fractional (ARMA) models. The fractional differencing parameter d can be greater than 1/2, thus incorporating the important unit root case. Some sufficient conditions for stationarity, ergodicity, and existence of higher-order moments are derived. An algorithm for approximate maximum likelihood (ML) estimation is presented. The asymptotic properties of ML estimators, which include consistency and asymptotic normality, are discussed. The large-sample distributions of the residual autocorrelations and the square-residual autocorrelations are obtained, and two portmanteau test statistics are established for checking model adequacy. In particular, non-stationary FARIMA(p, d, q)-GARCH(r, s) models are also considered. Some simulation results are reported. As an illustration, the proposed model is also applied to the daily returns of the Hong Kong Hang Seng index (1983–1984).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.