Abstract

Examining the robustness properties of maximum likelihood (ML) estimators of parameters in exponential power and generalized t distributions has been considered together. The well-known asymptotic properties of ML estimators of location, scale and added skewness parameters in these distributions are studied. The ML estimators for location, scale and scale variant (skewness) parameters are represented as an iterative reweighting algorithm (IRA) to compute the estimates of these parameters simultaneously. The artificial data are generated to examine performance of IRA for ML estimators of parameters simultaneously. We make a comparison between these two distributions to test the fitting performance on real data sets. The goodness of fit test and information criteria approve that robustness and fitting performance should be considered together as a key for modeling issue to have the best information from real data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.