Abstract

We create quantized spin gratings by single-photon detection and convert them on demand into photons with retrieval efficiencies exceeding 40% (80%) for single (a few) quanta. We show that the collective conversion process, proceeding via superradiant emission into a moderate-finesse optical resonator, requires phase matching. The storage time of 3 micros in the cold-atom sample, as well as the peak retrieval efficiency, are likely limited by Doppler decoherence of the entangled state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.