Abstract

In this paper we derive several results for connected matroids and use these to obtain new results for -connected graphs. In particular, we generalize work of Murty and Seymour on the number of two-element cocircuits in a minimally connected matroid, and work of Dirac, Plummer and Mader on the number of vertices of degree two in a minimally $2$-connected graph. We also solve a problem of Murty by giving a straightforward but useful characterization of minimally connected matroids. The final part of the paper gives a matroid generalization of Dirac and Plummer’s result that every minimally $2$-connected graph is $3$-colourable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.