Abstract
An edge of a 3-connected graph G is called essential if the 3-connection of G is destroyed both when the edge is deleted and when it is contracted to a single vertex. It is known (1) that the only 3-connected graphs in which every edge is essential are the “wheel-graphs.” A wheel-graph of order n, where n is an integer ⩾3, is constructed from an n-gon called its “rim” by adding one new vertex, called the “hub,” and n new edges, or “spokes” joining the new vertex to the n vertices of the rim; see Figure 4A.A matroid can be regarded as a generalized graph. One way of developing the theory of matroids is therefore to generalize known theorems about graphs. In the present paper we do this with the theorem stated above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.