Abstract
A 3-connected matroid M is said to be minimally 3-connected if, for any element e of M , the matroid M ∖ e is not 3-connected. Dawes [R.W. Dawes, Minimally 3-connected graphs, J. Combin. Theory Ser. B 40 (1986) 159–168] showed that all minimally 3-connected graphs can be constructed from K 4 such that every graph in each intermediate step is also minimally 3-connected. Oxley [J.G. Oxley, On connectivity in matroids and graphs, Trans. Amer. Math. Soc. 265 (1981) 47–58] proved a similar result by giving a characterization of minimally 2-connected matroids. In this paper we generalize Dawes’ result to minimally 3-connected binary matroids. We give a constructive characterization of all minimally 3-connected binary matroids starting from W 3 , the 3-spoked wheel, and F 7 ∗ , the Fano dual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.