Abstract
Matched-pair design is often adopted in equivalence or non-inferiority trials to increase the efficiency of binary-outcome treatment comparison. Briefly, subjects are required to participate in two binary-outcome treatments (e.g., old and new treatments via crossover design) under study. To establish the equivalence between the two treatments at the α significance level, a (1−α)100% confidence interval for the correlated proportion difference is constructed and determined if it is entirely lying in the interval (−δ0,δ0) for some clinically acceptable threshold δ0 (e.g., 0.05). Nonetheless, some subjects may not be able to go through both treatments in practice and incomplete data thus arise. In this article, a hybrid method for confidence interval construction for correlated rate difference is proposed to establish equivalence between two treatments in matched-pair studies in the presence of incomplete data. The basic idea is to recover variance estimates from readily available confidence limits for single parameters. We compare the hybrid Agresti–Coull, Wilson score and Jeffreys confidence intervals with the asymptotic Wald and score confidence intervals with respect to their empirical coverage probabilities, expected confidence widths, ratios of left non-coverage probability, and total non-coverage probability. Our simulation studies suggest that the Agresti–Coull hybrid confidence intervals is better than the score-test-based and likelihood-ratio-based confidence interval in small to moderate sample sizes in the sense that the hybrid confidence interval controls its true coverage probabilities around the pre-assigned coverage level well and yield shorter expected confidence widths. A real medical equivalence trial with incomplete data is used to illustrate the proposed methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.