Abstract
Matched-pair design is often used in clinical trials to increase the efficiency of establishing equivalence between two treatments with binary outcomes. In this article, we consider such a design based on rate ratio in the presence of incomplete data. The rate ratio is one of the most frequently used indices in comparing efficiency of two treatments in clinical trials. In this article, we propose 10 confidence-interval estimators for the rate ratio in incomplete matched-pair designs. A hybrid method that recovers variance estimates required for the rate ratio from the confidence limits for single proportions is proposed. It is noteworthy that confidence intervals based on this hybrid method have closed-form solution. The performance of the proposed confidence intervals is evaluated with respect to their exact coverage probability, expected confidence interval width, and distal and mesial noncoverage probability. The results show that the hybrid Agresti–Coull confidence interval based on Fieller’s theorem performs satisfactorily for small to moderate sample sizes. Two real examples from clinical trials are used to illustrate the proposed confidence intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.