Abstract
We investigate algebraic sets over certain finitely generated torsion-free metabelian groups. The class of groups under consideration is the class of so-called ρ-groups. It consists of all wreath products of finitely generated free abelian groups and their subgroups. In particular, it includes all free metabelian groups of finite rank. Our main result is a characterization of certain irreducible algebraic sets over ρ-groups. More precisely, we consider irreducible algebraic sets which are determined by a system of equations in n indeterminates. For their coordinate groups, we introduce a discrete invariant called the relative characteristic. This is an ordered pair of non-negative integers. We determine the structure of the coordinate group of the n-dimensional affine space, and show that its relative characteristic is (n, n). Then we characterize the irreducible algebraic sets of relative characteristic (n, n) and (0, k ) where 0 ≤ k ≤ n . We also obtain some examples of somewhat unusual algebraic sets over ρ-groups, thus demonstrating that algebraic sets over these groups are much more varied and complicated than, say, algebraic sets over free groups.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have