Abstract
We present the construction for a u-product G1 ○ G2 of two u-groups G1 and G2, and prove that G1 ○ G2 is also a u-group and that every u-group, which contains G1 and G2 as subgroups and is generated by these, is a homomorphic image of G1 ○ G2. It is stated that if G is a u-group then the coordinate group of an affine space Gn is equal to G ○ Fn, where Fn is a free metabelian group of rank n. Irreducible algebraic sets in G are treated for the case where G is a free metabelian group or wreath product of two free Abelian groups of finite ranks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.