Abstract

PurposeResponsible for lift generation, the helicopter rotor is an essential component to protect against ice accretion. As rotorcraft present a smaller wing cross-section and a lower available onboard power compared to aircraft, electro-thermal heating pads are favored as they conform to the blades’ slender profile and limited volume. Their optimization is carried out here taking into account, for the first time, the highly three-dimensional (3D) nature of the flow and ice accretion, in contrast to the current state-of-the-art that is limited to two-dimensional (2D) airfoils.Design/methodology/approachConjugate heat transfer simulation results are provided by the truly 3D finite element Navier–Stokes analysis package-ICE code, embedded in a proprietary rotorcraft simulation toolkit, with reduced-order modeling providing a time-efficient evaluation of the objective and constraint functions at every iteration. The proposed methodology optimizes heating pads extent and power usage and is versatile enough to address in a computationally efficient manner a wide variety of optimization formulations.FindingsLow-error reduced-order modeling strategies are introduced to make the tackling of complex 3D geometries feasible in todays’ computers, with the developed framework applied to four problem formulations, demonstrating marked reductions to power consumption along with improved aerodynamics.Originality/valueThe present paper proposes a 3D framework for the optimization of electro-thermal rotorcraft ice protection systems, in hover and forward flight. The current state-of-the-art is limited to 2D airfoils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.