Abstract

Helicopter rotor performance can be significantly altered by ice accretion which directly degrades the handling qualities and safety during flight. To obtain understanding into the effect of ice accretion on a helicopter rotor in forward flight under different icing environments, an experimental campaign was conducted in an icing wind tunnel using a rotor model with diameter at 2 m. Research was emphasized on revealing effect of liquid water content and static temperature on the rotor performance degradation. The dynamic thrust and torque of the rotor were measured by a six-component balance. Ice shape of the airfoils at specific rotor blade spanwise locations was obtained through the ice cutting process; meanwhile, the entire ice topology on the blade was scanned by means of the three-dimensional scanning technique. Results showed that ice was mainly accreted on the leading edge and lower surface of the blade. The static temperature of a icing cloud has a noticeable effect on the regime of accreted ice. The ice formation was transparent glaze at −8°C and transformed to milky rime when changed the static temperature to −20°C. Comparing to rime ice, the glaze ice on the blade is more influential to the rotor performance degradation. Particular attention is given to the fact that under extreme icing conditions, over 30% degradation of transient rotor thrust was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call