Abstract

Purpose This research focuses on the controlling irreversibilities in a radiative, chemically reactive electromagnetohydrodynamics (EMHD) flow of a nanofluid toward a stagnation point. Key considerations include the presence of Ohmic dissipation, linear thermal radiation, second-order chemical reaction with the multiple slips. With these factors, this study aims to provide insights for practical applications where thermal management and energy efficiency are paramount. Design/methodology/approach Lie group transformation is used to revert the leading partial differential equations into nonlinear ODE form. Hence, the solutions are attained analytically through differential transformation method-Padé and numerically using the Runge–Kutta–Fehlberg method with shooting procedure, to ensure the precise and reliable determination of the solution. This dual approach highlights the robustness and versatility of the methods. Findings The system’s entropy generation is enhanced by incrementing the magnetic field parameter (M), while the electric field (E) and velocity slip parameters (ξ) control its growth. Mass transportation irreversibility and the Bejan number (Be) are significantly increased by the chemical reaction rate (Cr). In addition, there is a boost in the rate of heat transportation by 3.66% while 0.05⩽ξ⩽0.2; meanwhile for 0.2⩽ξ⩽1.1, the rate of mass transportation gets enhanced by 12.87%. Originality/value This paper presents a novel approach to analyzing the entropy optimization in a radiative, chemically reactive EMHD nanofluid flow near a stagnation point. Moreover, this research represents a significant advancement in the application of analytical techniques, complemented by numerical approaches to study boundary layer equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.