Abstract
Fisher’s information measureIplays a very important role in diverse areas of theoretical physics. The associated measuresIxandIp, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The productIxIphas been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimensionIxIp≥4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifiesIxIp→0fort→∞.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have