Abstract

In this study, the energy equation and normalized wave function were obtained by solving the Schrödinger equation analytically utilizing the Eckart-Hellmann potential and the Nikiforov-Uvarov method. Fisher information and Shannon entropy were investigated. Our results showed higher-order characteristic behavior for position and momentum space. Our numerical results showed an increase in the accuracy of the location of the predicted particles occurring in the position space. Also, our results show that the sum of the position and momentum entropies satisfies the lower-bound Berkner, Bialynicki-Birula, and Mycieslki inequality and Fisher information was also satisfied for the different eigenstates. This study's findings have applications in quantum chemistry, atomic and molecular physics, and quantum physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.