Abstract
The major purpose of the presented study is to analyze and find the solution for the model of nonlinear fractional differential equations (FDEs) describing the deadly and most parlous virus so-called coronavirus (COVID-19). The mathematical model depending of fourteen nonlinear FDEs is presented and the corresponding numerical results are studied by applying the fractional Adams Bashforth (AB) method. Moreover, a recently introduced fractional nonlocal operator known as Atangana-Baleanu (AB) is applied in order to realize more effectively. For the current results, the fixed point theorems of Krasnoselskii and Banach are hired to present the existence, uniqueness as well as stability of the model. For numerical simulations, the behavior of the approximate solution is presented in terms of graphs through various fractional orders. Finally, a brief discussion on conclusion about the simulation is given to describe how the transmission dynamics of infection take place in society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.