Abstract

This study examines the dynamics of COVID-19 variants using a Caputo–Fabrizio fractional order model. The reproduction ratio R0 and equilibrium solutions are determined. The purpose of this article is to use a non-integer order derivative in order to present information about the model solutions, uniqueness, and existence using a fixed point theory. A detailed analysis of the existence and uniqueness of the model solution is conducted using fixed point theory. For the computation of the iterative solution of the model, the fractional Adams–Bashforth method is used. Using the estimated values of the model parameters, numerical results are used to support the significance of the fractional-order derivative. The graphs provide useful information about the complexity of the model, and provide reliable information about the model for any case, integer or non-integer. Also, we demonstrate that any variant with the largest basic reproduction ratio will automatically outperform the other variant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.