Abstract

The limited capacity for regenerative axonal growth by adult mammalian central neurons has been attributed, at least in part, to the presence of mature oligodendrocytes, which are non-permissive for axonal growth. These cells do not interfere with growth during development, as developmental growth is largely completed before the maturation of the oligodendrocytes. Unlike mammals, fish central nervous system is endowed with a high regenerative capability. When soluble substances derived from regenerating fish optic nerves are applied to injured adult rabbit optic nerves, regenerative axonal growth is permitted. Therefore, in the present study, we tested whether the fish optic nerve, after injury, is endowed with a mechanism by which it avoids the possible inhibitory effect of the process-bearing mature oligodendrocytes. Specifically, we looked for the possible presence of soluble substances that can regulate the number of process-bearing mature oligodendrocytes. We found that soluble substances derived from regenerating fish optic nerve, when added to cultures of oligodendrocytes derived from newborn or injured adult rat optic nerves, caused a decrease in the number of process-bearing mature oligodendrocytes. Soluble substances derived from normal noninjured fish optic nerves, had a significantly lower effect. The observed decrease in the number of mature oligodendrocytes could not be mimicked by the addition of platelet-derived growth factor (PDGF), a known mitogen of oligodendrocyte progenitors which transiently inhibits their maturation. This study suggests a role to oligodendrocyte inhibitory/cytotoxic factor(s) in regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.