Abstract

Fish optic nerves, unlike mammalian optic nerves, are endowed with a high capacity to regenerate. Injury to fish optic nerves causes pronounced changes in the composition of pulse-labeled substances derived from the surrounding non-neuronal cells. The most prominent of these injury-induced changes is in a 28-kilodalton (kDa) polypeptide whose level increases after injury, as revealed by one-dimensional gel electrophoresis and autoradiography. The present study identified as apolipoprotein A-I (apo-A-I) a polypeptide of 28 kDa in media conditioned by regenerating fish optic nerves. The level of this polypeptide increased after injury by approximately 35%. Apo-A-I was isolated by gel-permeation chromatography from delipidated high-density lipoproteins (HDL) that had been obtained from carp plasma by sequential ultracentrifugation. Further identification of the purified protein as apo-A-I was based on its molecular mass (28 kDa) as determined by gel electrophoresis, amino acid composition, and microheterogeneity studies. The isolated protein was further analyzed by immunoblots of two-dimensional gels and was found to contain six isoforms. Western blot analysis using antibodies directed against the isolated plasma protein showed that the 28-kDa polypeptide in the preparation of soluble substances derived from the fish optic nerves (conditioned media, CM) cross-reacted immunologically with the isolated fish plasma apo-A-I. Immunoblots of two-dimensional gels revealed the presence of three apo-A-I isoforms in the CM of regenerating fish optic nerves (pIs: 6.49, 6.64, and 6.73). At least some of the apo-A-I found in the CM is derived from the nerve, as was shown by pulse labeling with [35S]methionine, followed by immunoprecipitation. The apo-A-I immunoactive polypeptides in the CM of the fish optic nerve were found in high molecular-weight, putative HDL-like particles. Immunocytochemical staining revealed that apo-A-I immunoreactive sites were present in the fish optic nerves. Higher labeling was found in injured nerves (between the site of injury and the brain) than in non-injured nerves. The accumulation of apo-A-I in nerves that are capable of regenerating may be similar to that of apo-E in sciatic nerves of mammals (a regenerative system); in contrast, although its synthesis is increased, apo-A-I does not accumulate in avian optic nerves nor does apo-E in rat optic nerves (two nonregenerative systems).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call