Abstract
A novel multi-scale approach for extending the one-dimensional turbulence (ODT) model of [A.R. Kerstein. One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows, J. Fluid Mech. 392 (1999) 277] to treat turbulent flow in three-dimensional (3D) domains is described. In this model, here called ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested by performing simulations of decaying isotropic turbulence at two different Reynolds numbers and comparing to the experimental data of [H. Kang, S. Chester, C. Meneveau. Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulations, J. Fluid Mech. 480 (2003) 129; G. Comte-Bellot, S. Corrsin, Simple Eulerian correlation of full-and narrow band velocity signals in grid-generated ’isotropic’ turbulence, J. Fluid Mech. 48 (1971) 273].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.