Abstract

The one-dimensional turbulence (ODT) model is applied to the study of turbulent jet CO/H2/N2 flames. The ODT model retains the full range of length scales and no assumption of scale separation is required. In the present case, the ODT model describes the evolution of the entire flowfield; the ability of ODT to model the flowfield evolution is discussed. Predictions of the conditional means and fluctuations of temperature and the species mass fractions are compared with measurements and the level of closure required to address certain phenomena is discussed. The ODT model is shown to be useful for studying extinction/re-ignition phenomena and differential diffusion. The streamwise evolution in multidimensional flows is affected by dilatation in a manner not captured by the ODT model, and this results in discrepancies between the ODT mixing rates and the mixing rates evident in the measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.