Abstract
Explicit solvers are commonly used for simulating fast dynamic and highly nonlinear engineering problems. However, these solvers are only conditionally stable, requiring very small time-step increments determined by the characteristic length of the smallest, and often most distorted, element in the mesh. In the Lagrangian description of fluid motion, the computational mesh quickly deteriorates. To circumvent this problem, the Particle Finite Element Method (PFEM) creates a new mesh (e.g., through a Delaunay tessellation, based on node positions) when the current one becomes overly distorted. A fast and efficient remeshing technique is therefore of pivotal importance for an effective PFEM implementation in explicit dynamics. Unfortunately, the 3D Delaunay tessellation does not guarantee well-shaped elements, often generating zero- or near-zero-volume elements (slivers), which drastically reduce the stable time-step size. Available mesh optimization techniques have limited applicability due to their high computational cost when runtime remeshing is required. An innovative possibility to overcome this problem is the use of the Virtual Element Method (VEM), a variant of the finite element method that can make use of polyhedral elements of arbitrary shapes and number of nodes. This paper presents the formulation of a 3D first-order Particle Virtual Element Method (PVEM) for weakly compressible flows. Starting from a tetrahedral mesh, poorly shaped elements, such as slivers, are agglomerated to form polyhedral Virtual Elements (VEs) with a controlled characteristic length. This approach ensures full control over the minimum time-step size in explicit dynamics simulations, maintaining stability throughout the entire analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.