Abstract

Staphylococcus aureus is a Gram-positive bacterium with strong pathogenicity that causes a wide range of infections and diseases. Enolase is an evolutionarily conserved enzyme that plays a key role in energy production through glycolysis. Additionally, enolase is located on the surface of S. aureus and is involved in processes leading to infection. Here, crystal structures of Sa_enolase with and without bound phosphoenolpyruvate (PEP) are presented at 1.6 and 2.45 Å resolution, respectively. The structure reveals an octameric arrangement; however, both dimeric and octameric conformations were observed in solution. Furthermore, enzyme-activity assays show that only the octameric variant is catalytically active. Biochemical and structural studies indicate that the octameric form of Sa_enolase is enzymatically active in vitro and likely also in vivo, while the dimeric form is catalytically inactive and may be involved in other biological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.