Abstract

Phosphine (PH 3), a reduced phosphorus compound, is a highly toxic and reactive atmospheric trace gas. In this study, a total of ten ornithogenic soil/sediment profiles were collected from tundra ecosystems of east Antarctica and Arctic, and matrix-bound phosphine (MBP), the phosphorus fractions and alkaline phosphatase activity (APA) were analyzed. High MBP concentrations were found in these profiles with the range from 39.59 ng kg − 1 dw to 11.77 μg kg − 1 dw. MBP showed a consistent vertical distribution pattern in almost all the soil profiles, and its concentrations increased at soil surface layers and then decreased with depths. MBP levels in the ornithogenic soils were two to three orders of magnitude lower than those in ornithogenic sediments. The yield of PH 3 as a fraction of total P in all the profiles ranged from 10 − 5 to 10 − 9 mgPH 3 mg − 1 P with higher mean PH 3 yield in the ornithogenic sediments. The ornithogenic soils showed high concentrations of total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP) and metal elements (Cu, Zn, Mn, Fe, Al and Ca) but low MBP levels, vice versa for the ornithogenic sediments. No correlation had been obtained between MBP concentrations and IP, OP and TP. There existed an exponential correlation (r = 0.67, p < 0.01) between MBP and soil/sediment moisture. MBP concentrations showed a significant positive correlation with APA (r = 0.668, p < 0.0001), total organic carbon (r = 0.501, p < 0.0001), total hydrogen (r = 0.483, p < 0.0001) and total sulfur (r = 0.398, p < 0.001), indicating that the production of MBP is associated with microbially mediated factors rather than the contents of TP, IP and OP in the P-enriched ornithogenic soils/sediments. Our results indicated that MBP is an important gaseous link in the phosphorus biogeochemical cycles of ornithogenic tundra ecosystems in Antarctica and Arctic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.