Abstract

The mechanism of production of the various aneuploid progenies was clarified in the asynaptic amphidiploid plants (2n=34+4f+2F, AABB) ofScilla scilloides. Its asynaptic nature and chromosomal stickiness lead to the unequal segregation at anaphase I (AI) in PMC's. The observed values in 18 segregation patterns, 17:17 to 0: 34, were different from the expected values estimated from random segregation of chromosomes. Nevertheless, the preferential transmission of special chromosomes among genomes A (x=8=a1−a8) and B (x=9=b1−b9) had not occurred. As the result of unequal segregation, the pollen grains with various chromosome numbers were observed. Almost all of the 200 pollen grains contained chromosome numbers more than 17 (range 8 to 34). The observed values of each chromosome number were roughly similar to the expected values of containing the complete set of genome A or B in the random distribution without preferential segregation of chromosomes at AI. The difference between the index of polien mitosis and the pollen fertility was significant in the Wilcoxon matched-pairs signed rank test and suggested the selection for some genomically unbalanced pollen grains during maturation. Consequently, viable pollen grains with various chromosome constitutions are a few (mean pollen fertility of 5.8%) but might produce many aneuploids by self- and cross-pollination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.