Abstract

In the region of slightly acidic pH (рН 5.7), the manganese cluster in oxygen-evolving complex of photosystem II (PSII) is more resistant to exogenous reductants. The effect of such pH on the heat inactivation efficiency of the electron transport chain (O2 evolution and 2,6-dichlorophenolindophenol reduction) in PSII membranes and thylakoid membranes was investigated. Under thylakoid membranes illumination accompanied by lumen acidification, their resistance to heat inactivation increases. In the presence of protonophores, the rate of heat inactivation increases, which seems to be associated not with the protonophore mechanism, but with structural and/or functional changes in membranes. In PSII membrane preparations, the efficiency of the oxygen evolution inhibition at pH 5.7 is also lower than at pH 6.5. The role of reactive oxygen species in thermal inactivation of photosynthetic membranes was investigated using a lipophilic cyclic hydroxylamine ESR spin probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.