Abstract

Abstract Between 2014 and 2018 the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by Observing System Simulation Experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are: (1) increasing the revisit rate for satellite radiance soundings produces the largest benefits, but at a significant cost by requiring an increase of the number of polar orbiting satellites from two to twelve; (2) a large positive impact is found when the number of RO soundings/day is increased well beyond current values and other observations are held at current levels of performance; (3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and (4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call