Abstract
This work examines a polytope-type approach for observer-based security control of a fractional-order system that is under multiple attacks via an event-triggered scheme. A novel multiple-attack model is first proposed for fractional-order systems such as denial-of-service attacks and reply attacks, which can destroy the system's security during the signal process. In contrast to previous studies, the design of the controller is developed using an observer-based event-triggered scheme in the presence of multiple attacks. An event-triggering strategy is proposed to reduce the communication burden of the output measurement signals. An observer-based control is designed to keep the fractional-order system stable in all scenarios where one or more simultaneous attacks may occur. These findings can ensure the absence of Zeno behaviour and considerably reduce data transmissions. By employing the suitable Lyapunov–Krasovskii functional, sufficient conditions are derived to ensure fractional-order system stability. Controller and observer-gain matrices are obtained by using the linear matrix inequality technique. Finally, two examples are provided to demonstrate the feasibility and usefulness of the suggested methodology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have