Abstract

Abstract Based on data collected from 14 buoys in the Gulf Stream, this study examines how hourly air–sea turbulent heat fluxes vary on subdaily time scales under different boundary layer stability conditions. The annual mean magnitudes of the subdaily variations in latent and sensible heat fluxes at all stations are 40 and 15 W m−2, respectively. Under near-neutral conditions, hourly fluctuations in air–sea humidity and temperature differences are the major drivers of subdaily variations in latent and sensible heat fluxes, respectively. When the boundary layer is stable, on the other hand, wind anomalies play a dominant role in shaping the subdaily variations in latent and sensible heat fluxes. In the context of a convectively unstable boundary layer, wind anomalies exert a strong controlling influence on subdaily variations in latent heat fluxes, whereas subdaily variations in sensible heat fluxes are equally determined by air–sea temperature difference and wind anomalies. The relative contributions by all physical quantities that affect subdaily variations in turbulent heat fluxes are further documented. For near-neutral and unstable boundary layers, the subdaily contributions are O(2) and O(1) W m−2 for latent and sensible heat fluxes, respectively, and they are less than O(1) W m−2 for turbulent heat fluxes under stable conditions. Significance Statement High-resolution buoy observations of air–sea variables in the Gulf Stream provide the opportunity to investigate the physical factors that determine subdaily variations in air–sea turbulent heat fluxes. This study addresses two key points. First, the observed subdaily amplitudes of heat fluxes are related to various processes, including wind fields and air–sea thermal effect differences. Second, the global sea surface heat budget is known to not be in near-zero balance and it ranges from several to tens of watts per square meter. Therefore, consideration of the relatively strong influence of subdaily variability in air–sea turbulent heat fluxes could provide a new strategy for solving the global heat budget balance problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.