Abstract

AbstractSubmesoscale lenses of water with anomalous hydrographic properties have previously been observed in the East Australian Current (EAC) system, embedded within the thermocline of mesoscale anticyclonic eddies. The waters within these lenses have high oxygen content and temperature–salinity properties that signify a surface origin. However, it is not known how these lenses form. This study presents field observations that provide insight into a possible generation mechanism via subduction at upper-ocean fronts. High-resolution hydrographic and velocity measurements of submesoscale activity were taken across a front between a mesoscale eddy dipole downstream of the EAC separation point. The front had O(1) Rossby number, strong vertical shear, and flow conducive to symmetric instability. Frontogenesis was measured in conjunction with subduction of an anticyclonic water parcel, indicative of intrathermocline eddy formation. Twenty-five years of satellite imagery reveals the existence of strong mesoscale strain coupled with strong temperature fronts in this region and indicates the conditions that led to frontal subduction observed here are a persistent feature. These processes impact the vertical export of tracers from the surface and dissipation of mesoscale kinetic energy, implicating their importance for understanding regional ocean circulation and biological productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call