Abstract

Abstract This paper provides a framework that unifies the characteristics of Langmuir turbulence, including the vortex force effect, velocity scalings, vertical flow structure, and crosswind spacing between surface streaks. The widely accepted CL2 mechanism is extended to explain the observed maximum alongwind velocity and downwelling velocity below the surface. Balancing the extended mechanism in the Craik–Leibovich equations, the scalings for the alongwind velocity u, crosswind velocity υ, and vertical velocity w are formulated as Here, Uf is the friction velocity, Us is the Stokes drift on the surface, and La = (Uf/Us)1/2 is the Langmuir number. Simulations using the Stratified Ocean Model with Adaptive Refinement in large-eddy simulation (LES-SOMAR) mode validate the scalings and reveal physical similarity for velocity and crosswind spacing. The horizontally averaged velocity along the wind on the surface grows with time, whereas υ/V and w/W are confined. The root-mean-square (rms) of w peaks at wrms/W ≈ 0.85 at a depth of 1.3Zs, where Zs is the e-folding scale of the Stokes drift. The crosswind spacing Lp grows linearly with time but is finally limited by the depth of the water H, with maximum Lp/H = 3.3. This framework agrees with measurement collected in six different field campaigns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.