Abstract

We report the self- and external-dressed Autler-Townes (A-T) splittings of the images of the generated four-wave mixing signal (FWM) and electromagnetically induced transparency (EIT) of probe images in cascade three-level atomic system. Such spatial properties of probe and FWM signals are induced by the enhanced cross-Kerr nonlinearity. We demonstrate the controlled electromagnetically induced spatial dispersion (EISD), splitting and focusing of probe and FWM signals images by adjusting self- and external-dressing fields. Studies on such controllable A-T spatial splitting and spatial EIT effect can be very useful in applications of spatial signal processing and optical communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.