Abstract

We illustrate the experimental observations of Autler-Townes splitting and the spatial splitting in an electromagnetically induced transparency window in a atomic vapor system of D1 line. As the power of the dressing laser beam changes, we study first-order and secondary Autler-Townes splitting. The influences of these dressing beams, which lead to the larger spatial splitting of four-wave mixing and the shift of probe transmission signal with by changing frequency detuning. Studies on such controllable Autler-Townes splitting and spatial splitting effect can be very useful in applications of spatial signal processing and optical communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.