Abstract
Turbulent flow restricted to two dimensions can spontaneously develop order on large scales, defying entropy expectations and in sharp contrast with turbulence in three dimensions where nonlinear turbulent processes act to destroy large-scale order. In this work we report the observation of unusual turbulent behavior in steady-state flow of superfluid ^{4}He-a liquid with vanishing viscosity and discrete vorticity-in a nearly two-dimensional channel. Surprisingly, for a range of experimental parameters, turbulence is observed to exist in two bistable states. This bistability can be well explained by the appearance of large-scale regions of flow of opposite vorticity.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have