Abstract

The behavior of the flow between two coaxial conical cylinders with the inner one rotating and the outer one stationary is studied numerically. Special attention is paid to the occurrence of Taylor vortices in basic flow and unsteady helical vortices. It is found that, in basic flow, the vortices occur in the direction toward smaller radius, while toward bigger radius in unsteady helical vortices; moreover, the unsteady helical vortices can coexist with unstable steady Taylor vortices. The results suggest that the behavior of conical flow is dominated by a competition between the meridional flow and radial flow. The effect of meridional flow is most significant at small apex angle or in basic flow and helical vortices, while the radial flow dominates the structure at larger apex angle or in steady vortical flow. In order to get better understanding the competition and the transition of Taylor–Couette flow to conical flow, a velocity angle related to velocity components is defined, and the pattern evolution of velocity, streamlines and the velocity angle are examined with respect to apex angle, as well as Reynolds number. Finally, the statistical properties of turbulent conical flow are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call