Abstract

SUMMARYDeformable models have been studied in image analysis over the last decade and used for recognition of flexible or rigid templates under diverse viewing conditions. This article addresses the question of how to define a deformable model for a real-time color vision system for mobile robot navigation. Instead of receiving the detailed model definition from the user, the algorithm extracts and learns the information from each object automatically. How well a model represents the template that exists in the image is measured by an energy function. Its minimum corresponds to the model that best fits with the image and it is found by a genetic algorithm that handles the model deformation. At a later stage, if there is symbolic information inside the object, it is extracted and interpreted using a neural network. The resulting perception module has been integrated successfully in a complex navigation system. Various experimental results in real environments are presented in this article, showing the effectiveness and capacity of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.