Abstract

BackgroundSchizophrenia is thought to be a disorder of brain dysconnectivity. An imbalance between cortical excitation/inhibition is also implicated, but the link between these abnormalities remains unclear. The present study used resting state functional connectivity MRI (rs-fcMRI) and magnetic resonance spectroscopy (MRS) to investigate how measurements of glutamate + glutamine (Glx) in the anterior cingulate cortex (ACC) relate to rs-fcMRI in medication-naïve first episode psychosis (FEP) subjects compared to healthy controls (HC). Based on our previous findings, we hypothesized that in HC would show correlations between Glx and rs-fMRI in the salience and default mode network, but these relationships would be altered in FEP.MethodsData from 53 HC (age = 24.70 ±6.23, 34M/19F) and 60 FEP (age = 24.08 ±6.29, 38M/22F) were analyzed. To obtain MRS data, a voxel was placed in the ACC (PRESS, TR/TE = 2000/80ms). Metabolite concentrations were quantified with respect to internal water using the AMARES algorithm in jMRUI. rs-fMRI data were processed using a standard preprocessing pipeline in the CONN toolbox. BOLD signal from a priori brain regions of interest from posterior cingulate cortex (default mode network, DMN), anterior cingulate cortex (salience network, SN), and right posterior parietal cortex (central executive network, CEN) were extracted and correlated with the rest of the brain to measure functional connectivity (FC). Group analyses were performed on Glx, FC, and Glx-FC interactions while controlling for age, gender, and motion when applicable. FC and Glx-FC analyses were performed using small volume correction [(p < 0.01, threshold-free cluster enhancement corrected (TFCE)].ResultsNo significant between-group differences were found in Glx concentration in the ACC [F(1, 108) = 0.34, p = 0.56], but reduced FC was found on each network in FEP compared to HC (pTFCE corrected). Group Glx-FC interactions were found in the form of positive correlations between Glx and FC in DMN and SN in the HC group, but not in FEP; and negative correlations in CEN in HC, but not in FEP.DiscussionWhile we did not find significant group differences in ACC Glx measurements, ACC Glx modulated FC differentially in FEP and HC. Positive correlations between Glx and FC were found in the SN and DMN, suggesting long range modulation of the two networks in HC, but not in FEP. Additionally, negative correlations between Glx and FC were found in CEN in HC, but not in FEP. Overall, these results suggest that even in the absence of group differences in Glx concentration, the long-range modulation of these 3 networks by ACC Glx is altered in FEP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call