Abstract
Oscillatory synchrony plays a crucial role in establishing functional connectivity across distinct brain regions. Within the realm of schizophrenia, suggested to be a neuropsychiatric disconnection syndrome, discernible aberrations arise in the organization of brain networks. We aim to investigate whether the resting-state functional network is already altered in healthy individuals with high schizotypy traits, highlighting the pivotal influence of brain rhythms in driving brain network alterations. Two-minute resting-state electroencephalography recordings were conducted on healthy participants with low and high schizotypy scores. Subsequently, spectral Granger causality was used to compute functional connectivity in theta, alpha, beta, and gamma frequency bands, and graph theory metrics were employed to assess global and local brain network features. Results highlighted that high-schizotypy individuals exhibit a lower local efficiency in theta and alpha frequencies and a decreased global efficiency across theta, alpha, and beta frequencies. Moreover, high schizotypy is characterized by a lower nodes' centrality and a frequency-specific decrease of functional connectivity, with a reduced top-down connectivity mostly in slower frequencies and a diminished bottom-up connectivity in faster rhythms. These results show that healthy individuals with a higher risk of developing psychosis exhibit a less efficient functional brain organization, coupled with a systematic decrease in functional connectivity impacting both bottom-up and top-down processing. These frequency-specific network alterations provide robust support for the dimensional model of schizophrenia, highlighting distinctive neurophysiological signatures in high-schizotypy individuals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have