Abstract

Simple SummaryChicken breast is considered as a good source of high-quality protein and essential trace minerals. However, the nutritive quality of the meat can be adversely affected by wooden breast (WB) myopathy. WB manifests as decreased contents of total protein (per gram of meat) and essential amino acids isoleucine, leucine and valine. In addition, the mineral profile of WB meat is abnormal. The cause of WB remains unclear, but it has been linked with oxidative stress within the breast muscle in the living birds. In this study, protein oxidation in the meat and changes in absolute expression of oxidative stress response genes were identified, strengthening the link between oxidative stress and the incidence of WB.Wooden breast (WB) abnormality adversely impacts the quality of chicken meat and has been linked with oxidative stress. In this study, breast samples were taken from carcasses of 7-week-old Ross 308 broilers 20-min and 24-h postmortem. Five WB and seven non-WB control samples were assigned based on palpatory hardness (non-WB = no unusual characteristics and WB = focal or diffused hardness). WB exhibited lower contents of protein and the amino acids, i.e., isoleucine, leucine and valine, lighter surface color, lower shear force, greater drip loss and altered mineral profiles (p ≤ 0.05). Despite no difference in lipid oxidation, a greater degree of protein oxidation was found in the WB meat (p ≤ 0.05). Absolute transcript abundances of superoxide dismutase, hypoxia inducible factor 1 alpha and pyruvate dehydrogenase kinase 1 were greater in WB (p ≤ 0.05), whereas lactate dehydrogenase A expression was lower in WB (p ≤ 0.05). The findings support an association between oxidative stress and the altered nutritional and technological properties of chicken meat in WB.

Highlights

  • Chicken meat, the breast portion, is widely recognized as an inexpensive source of high-quality protein providing adequate amounts of all of the essential amino acids with a protein digestibility corrected amino acid score value ranging between 0.91 and 0.95 [1]

  • wooden breast (WB) is characterized by hardened ridges extending from the cranial to the caudal regions, pale color and surface hemorrhagic lesions present on the pectoralis major muscle [6,7,8], WB abnormality is a global concern in the poultry industry as development of this myopathy alters the appearance of the meat and its physicochemical and technological properties [9,10,11,12]

  • The initial inspection of sample compositions showed that the mean pH20 of the WB group was significantly lower than that of the non-WB group (p ≤ 0.05), whereas the lactate and glycogen contents were not significantly different (p > 0.05; Table 2)

Read more

Summary

Introduction

The breast portion, is widely recognized as an inexpensive source of high-quality protein providing adequate amounts of all of the essential amino acids with a protein digestibility corrected amino acid score value ranging between 0.91 and 0.95 [1]. In response to consumer demand, modern broilers (meat-type chickens), have been intensively selected through a breeding program for an accelerated growth rate and larger breast mass. The success in breeding selection, has coincided with an increased occurrence of chicken myopathies, including wooden breast (WB) syndrome [4,5]. Accumulation of ROS can trigger oxidative stress within the muscle fibers [16]. Oxidative stress within WB muscle has been reported from studies of differential gene expression [17,18,19,20] and metabolomic profiling [21,22], suggesting a possible etiology for WB

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call